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The viscous structure of a separated eddy is investigated for two cases of 
simplified geometry. In  9 1, an analytical solution, based on a linearized model, is 
obtained for an eddy bounded by a circular streamline. This solution reveals the 
flow development from a completely viscous eddy at low Reynolds number to an 
inviscid rotational core at high Reynolds number, in the manner envisaged by 
Batchelor. Quantitatively, the solution shows that a significant inviscid core 
exists for a Reynolds number greater than 100. At low Reynolds number the 
vortex centre shifts in the direction of the boundary velocity until the inviscid 
core develops; at  large Reynolds number, the inviscid vortex core is symmetric 
about the centre of the circle, except for the effect of the boundary-layer displace- 
ment-thickness. Special results are obtained for velocity profiles, skin-friction 
distribution, and total power dissipation in the eddy. In addition, results of the 
method of inner and outer expansions are compared with the complete solution, 
indicating that expansions of this type give valid results for separated eddies at  
Reynolds numbers greater than about 25 to 50. The validity of the linear analysis 
as a description of separated eddies is confirmed to a surprising degree by 
numerical solutions of the full Navier-Stokes equations for an eddy in a square 
cavity driven by a moving boundary at the top. These solutions were carried out 
by a relaxation procedure on a high-speed digital computer, and are described 
in 9 2. Results are presented for Reynolds numbers from 0 to 400 in the form of 
contour plots of stream function, vorticity, and total pressure. At the higher 
values of Reynolds number, an inviscid core develops, but secondary eddies are 
present in the bottom corners of the square at all Reynolds numbers. Solutions 
of the energy equation were obtained also, and isotherms and wall heat-flux 
distributions are presented graphically. 

Introduction 
Separated flow is an old subject in the literature of fluid mechanics. For 

example, in his study of hydraulics in the fifteenth century, Leonard0 da Vinci 
observed and sketched recirculating eddies formed in the flow over various 
configurations (Giacomelli 1934; Hoerner 1958). From his observations, he con- 
cluded that the forebody provides the dominant part of the drag of a bluff body.? 

-f Even at this early period, flow visualization techniques were available; da Vinci used 
millet seed to observe the particle paths on his water table, and pointed out that illuminated 
dust particles served the same purpose in air. 
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Isaac Newton formulated his well-known theory of drag based on the idea 
of particles striking only the front of a moving body. Particle reflexions of 
several kinds were considered, but in each case the rear of the body was com- 
pletely shielded from the flow. (The successful application of one of his theories 
awaited the recent development of hypersonic flight.) At a later time the names 
of Helmholz and Kirchhoff became associated with the subject through their 
elegant mathematical treatment of the problem. In spite of this long history 
and the famous names associated with it, the fact is that a real understanding of 
the subject has not yet been obtained. Many theoretical models have been 
proposed, but other than the complete Navier-Stokes equations, none has been 
accepted as a well-founded theory. 

Reynolds 
number range Flow configuration 

R e 1  

Remarks 

Steady flow, no wake 

R w 1  Steady flow, non-circulating wake 

R N lo2 Relatively steady, recirculating flow 

R 103 Stable vortex street 

Turbulent wake 
3 - 

TABLE 1. Flow regimes for circular cylinder 

In  the present study, we undertake the problem of determining the effect of 
Reynolds number on the structure of the flow in a steady recirculating eddy, 
of the kind found in the separated region behind a bluff body. To place our 
problem in perspective, table 1 presents the various regimes of flow experienced 
by a bluff body (circular cylinder) immersed in an incompressible fluid. At the 
lowest Reynolds numbers the flow exhibits complete fore-and-aft symmetry for 
a symmetric body. The appearance of a wake first occurs a t  a Reynolds number 
R of the order of 1, and the flow separates from the rear of the cylinder forming 
a recirculating eddy for R greater than about 5.  The steady recirculating wake 
persists for a t  least a decade in Reynolds number, growing in length until 
oscillations in the downstream wake progress forward to the recirculating eddy. 
The steady flow then breaks down into the familiar KBrmBn vortex street for 
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R of the order of 100. This pattern of alternating vortices exists over approxi- 
mately two decades of Reynolds number, breaking down into an irregular 
unsteady wake, and finally a completely turbulent wake for R greater than 105. 
The limits on these flow regimes are not fixed, since they depend strongly on the 
conditions of the experiment. For example, the value R = 40 is conventional 
for the breakdown of the steady recirculating flow. However, this value probably 
is a lower limit of erratic experimental values for circular cylinders; far higher 
values have been observed. Prandtl (1934) shows a stable recirculating eddy 
behind an oblate elliptic cylinder at  R = 80, and Grove, Shair, Petersen & Acrivos 
(1964) have stabilized the flow behind a circular cylinder to Reynolds numbers as 
high as 300 by use of the stabilizing effect of tunnel walls and a downstream 
splitter plate. Moreover, compressibility of the fluid has a strong stabilizing 
effect, so that steady recirculating wakes have been observed in supersonic flows 
for R > lo6, far higher than for low-speed flows (Chapman, Kuehn & 1,arson 
1956; Nash 1962). 

The flow regimes just discussed have been established from experiments; the 
theory has been established only at  low Reynolds numbers, and even then the 
calculation is not trivial. The classical theory of Stokes, in which the inertial 
terms are dropped from the Navier-Stokes equations, is deficient for the case of 
a body in an unbounded stream, in that Stokes flow cannot properly represent 
conditions both at the body and at infinity. This difficulty has been resolved by 
Kaplun and his co-workers by use of the method of inner and outer expansions. 
The Stokes flow is the inner expansion which is matched through an overlapping 
region to the Oseen expansion in the outer region about the point at  infinity. This 
method has been applied to both the sphere and cylinder by Kaplun & Lagerstrom 
(1957), Kaplun (1957), and in more detail by Proudman & Pearson (1957). Van 
Dyke (1964) has compared the two-term expansion with both numerical and 
experimental results for the flow behind a sphere, and good agreement is observed 
for Reynolds numbers up to 70 for the shape of the standing eddy and up to 
R = 120 for the length of the eddy. This agreement is far beyond what might be 
expected of two terms of an expansion in small Reynolds number. The author 
has made a similar comparison of a two-term Stokes expansion for the Jeffery- 
Hamel wedge flows at  R - 100. In  this case agreement is good only when the 
wedge flow is entirely viscous, such as for the separation-type profiles exhibited 
by the divergent-wedge flows. From results presented later in this article, it will 
be seen that a recirculating eddy is completely viscous for Reynolds numbers up 
to 100. Even so, Van Dyke’s results are remarkable in that the shape of the eddy 
is a free boundary, subject to distortion by the outer flow. 

For higher Reynolds numbers, the flow field might be constructed in a similar 
way by adding higher order terms $0 the limiting steady flow for R-tco. Thus 
Imai (1  960) has extended the Helmholz-Kirchhoff free-streamline theory to 
finite Reynolds number by considering the flow induced by the shear layer 
developed along the free streamline. Unfortunately, it  is not clear that the free- 
streamline model is the correct limit for R -+ co. Alternatively, Batchelor (1956a) 
proposed as a limiting steady flow a finite wake embodying a residual recircu- 
lating eddy having uniform vorticity. This model was earlier used by Batchelor 

8-2 
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(1954) in treating a problem in free convection. A third alternative is suggested 
by Grove (1963), who concludes from extrapolation of his experiments that the 
limiting steady wake is infinite in length, finite in width, and remains viscous in 
character even in the limit R -+ 00 (owing to its infinite length). Since three models 
proposed so recently are in such basic disagreement, it must be concluded that the 
classical wake problem is not yet resolved. On the other hand, many problems 
exist for which the separation region is known to be of finite extent, as within a 
cavity in a solid wall, or in the vicinity of the base of a body in supersonic flight. 
For such problems, Batchelor’s model appears to be the correct steady flow in 
the limit R + 00. 

Batchelor’s model of separated eddies is based on an exact integral theorem 
derived from the Navier-Stokes equations for steady flow (a corresponding 
theorem was derived for axisymmetric flow). With the assumption that viscous 
effects are restricted to a thin layer along the separation streamline, the uniform 
vorticity result then follows from this theorem. The specific value of the vorticity 
is obtained by matching to the external boundary conditions, using the boundary- 
layer equations. Batchelor (1956b) illustrated the matching procedure for a 
circular eddy; for this case the pressure gradient terms drop out of the boundary- 
layer equations. Unfortunately, for a more general case the pressure terms 
prevent the matching process being carried out in a simple manner. Some of 
Batchelor’s results for plane flow were given concurrently by Feynman & 
Lagerstrom (1956), who attribute the uniform vorticity limit to Prandtl in 1905. 
These authors point out that the existence of secondary eddies may invalidate 
the assumption of a thin viscous layer. In  addition to this effect, however, the 
concept of secondary eddies suggests that the uniform vorticity model is not 
unique; that is, it  is possible to construct multiple eddies, each having its own 
uniform vorticity, within a prescribed contour. In this case Batchelor’s model 
would presume to describe a primary eddy, with the secondary eddies producing 
only a minor effect. 

The purpose of the present study is threefold: (1)  to determine the structure of 
a viscous eddy as a function of Reynolds number; (2) to test the validity of the 
uniform vorticity model as the limiting solution of the Navier-Stokes equations 
for steady flow; and (3) if valid, to determine the range of finite Reynolds numbers 
for which the uniform vorticity model remains a good approximation. To con- 
centrate attention on the viscous structure of the eddy itself, the model chosen 
is the recirculating flow within a fixed finite cavity. Two configurations are studied. 
In  5 1, an analytical solution is obtained for the circular cavity at all Reynolds 
numbers, based on a linearized model (the inviscid limit for this problem was 
treated by Batchelor 1956 b) .  Then in Q 2, numerical solutions of the full Navier- 
Stokes equations are presented for a square cavity, confirming the linearized 
treatment of the circle and, further, demonstrating the effect of pressure gradient 
in forming secondary eddies in the corners. In addition, thermal conditions in a 
recirculating eddy are considered in Q 2 with results for the temperature distribu- 
tion analogous to those of vorticity for the kinematic conditions 
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1. Linearized analysis of circular eddies 
1.1. Formulation and general solution 

Consider now a steady, viscous, incompressible flow recirculating within a closed 
circular boundary (figure 1). Although the circular shape of the boundary is 
fixed, the velocity on the boundary may be prescribed arbitrarily. Introduce 

FIGURE '1. Notation for circular eddy. 

non-dimensional variables P = r /a,  = u/Qa,  $ = $/Qa2, D = w/Q where a is 
the radius of the circle and L2 is a characteristic angular velocity on the boundary 
surface. Then in terms of the stream function $ and the vorticity 9, the Navier- 
Stokes equations in cylindrical co-ordinates become 

where R is the Reynolds number Qa2/v. We now formulate a linearized problem 
by restricting our attention to flows which are slightly perturbed from a basic 
flow, which we take to be solid-body rotation (a trivial solution of the Navier- 
Stokes equations for all Reynolds numbers). The basic flow is defined by 

a, = B ,  .ti, = 0, Ip = B(1 -P2), 9 = 2. 

In  the usual way, add a perturbation to each of the dependent variables of the 
basic flow, substitute into the above form of the Navier-Stokes equations, and 
retain only first-order terms in the perturbation quantities. The result is a linear 
equation for the vorticity pW = R awlae. 
(In this equation and the following the symbol (") is understood.) This lineariza- 
tion procedure is quite similar to the Oseen linearization, differing in that the 
basic flow is a uniform rotation in this case and a uniform translation in the 
Oseen problem. 

(1.2) 

Solutions of (1.2) are found by separation of variables. Putting 

w = f n ( r )  cine, 

we find that f n  must satisfy a variation of Bessel's equation 
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Solutions regular a t  the origin are the modified Bessel functions of first kind of 
order n. Hence, by adding the elementary solutions, the vorticity is expressed 

(1.4) 
by the series a 

1 
w = wo - iR x nb, I,{r J(inR)} cine. 

The constant multiplier (-inR) was chosen to obtain a simple form for the 
stream function, as follows. Putting 

@ = F,(r) cine, 
then ( 1.1) gives the non-homogeneous equation 

r2Fi+rFA-n2Fn = - r 2  fn. (1.5) 

Comparing (1.5) with (1.3), we see that a particular solution of (1.5) is just 
F,(r) = ij',(r)/nR. Moreover, the homogeneous part of (1.5) has the solution 
F, = rn, regular at  the origin. Consequently, corresponding to (1.4), the stream 
function is expressed by the series. 

m 

@ = [a, - t w o  r2] + x [a, r" + b, I,{r 2/(inR)}] cine. (1.6) 
1 

The leading term represents solid body rotation with angular velocity i w , ;  the 
constants a, and b, in the higher-order terms? are determined from the boundary 
conditions on the enclosing streamline, which may be expressed in the general 
form @ = 0, I 

Substituting the expansion for ~, the coefficients are found to be related by 

a, = $w, = *Ao, 

With the coefficients determined by (1.8), the solution can be evaluated for any 
value of Reynolds number. Before considering special cases, let us derive the 
asymptotic forms of the solution for both low and high Reynolds number. 

1.2. The 8tokes limit: R --f 0 

From the well-known expansion of the Bessel function for small argument 

I ,(z)=i-nJn(is)=-(-)  1 x n  [l+-(2)2+...], 1 
n! 2 n f l  2 

the following asymptotic results are obtained 

r, In{ J(inR)} - In{r 2/(inR)} N (1 - r2) rn(inR)4(n+2)/2n+2(n + l)!, 
J(inR) I,+l{ J(inR)} N (i~~R)&(n+2)/2"+~(n + I)!. 

7 Note that the a,  terms represent irrotational flow while the b,  terms yield the vorticity 
given by (1.4). 
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With these results, the stream function takes the limiting form 

119 

This form of the stream function is clearly a biharmonic function. Similarly the 
vorticity takes the limiting form 

It is instructive to take a special case for which a solution in closed form may 
be obtained. Consider a square-wave distribution of velocity along the enclosing 

(1.10) 

The Fourier coefficients for this distribution are 

A, = ~1277,  A, = (2jnn) sin 8na. (1.11) 

Then the stream function is given by 

Now if the sine is expressed in exponential form, we have $ expressed as a well- 
known power series in r exp [i(8 + +a)] and r exp [i(8 - $a)]. Hence in closed form 

)] (1.12) 
r sin (8 + $a) 

( 1 - r c o s ( O + m ]  
r sin (8 - &a) 

-arctan ~ 1 1 - r cos (8 - Qa) ’ 
= E2 [+a + arc tan 

277 

where only the real part of the complex function has been taken. 
The velocity components and the vorticity now may be evaluated by dif- 

ferentiating (1.2). However, for Stokes flow, vorticity and pressure are conjugate 
functions of a complex variable. Hence both real and imaginary parts of (1.9) 
have physical significance. Proceeding as for the stream function, the vorticity 
series with the coefficients of (1 .1  1) can be summed. In  particular, the vorticity 
(and hence skin friction) along the enclosing streamline is given by 

1 
~ ( 1 ’ 0 )  = - [ctnf(20+a)-ctn$(28-a)],  

n (1.13) 

(1.14) 

where C, = p/+pQ2a2. We note that both skin friction and pressure are singular 
(the former non-integrably so) at the points of discontinuity in the surface 
velocity. The solution near these singularities is locally identical to the scraping- 
corner solution treated by Taylor (1960, 1962), in which an inclined moving wall 
slides over another fixed wall. Taylor explains this paradoxical situation by 
arguing that the viscous stress will tend to lift the moving wall, creating a gap 
and so relieving the corner stresses. However, this explanation does not apply 
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to the case in which the moving wall recedes from the fluid, since the shear stress 
reverses its direction in this case. If our circular eddy is regarded as a model for 
a separated flow, however, the singularity is removed by requiring that the 
velocity be continuous on the separation streamline. The step-function velocity 
used here as an example should provide a qualitatively correct model of a 
separated eddy since the singularities are expected to have only a local effect. 

1.3. The Prandtl limit: R --f co 

For this limit process, the large argument expansion of the Bessel function is 
appropriate (Whittaker & Watson 1952) 

] +O(e-a/+). 
ez (4n2 - 1)  (4n2 - 3). . .[4n2 - (2r - 1)2] 

r!  (sx)T- &(z)  = ___ [ l +  5 ( -  1)’ &w r=l 

Putting = J(inR), the coefficient a, can be written as 

where the $,(x) are given by 

(1.16) 

The leading term C,(n) is dominant in the Prandtl limit, but for later discussion 
the higher-order terms will be needed. The ck can be determined directly from 
the expansion for I,(z). However, an easier approach may be followed. The 
function $(z) defined above satisfies a differential equation of the generalized 
Ricatti type 

Substituting the series expansion (1.16) we find 

C,(n) = 1, Cl(n) = - +, C2(n) = (n2 - & / z ,  

while the higher-order coefficients satisfy the recurrence relation 

k-1 

,=I 
2Ck = (k - 2) Ckp1- x c, c,<-m. 

The dominant term in the expansion is $(z )  N 1; consequently 

u, N A,/,/(inR). 

The higher-order terms will be useful in later discussion. 
Now consider the b,-terms; from (1.8) 

From the asymptotic expansion for In(z), we find 

( 1 . 1 7 4  

(1.17 b)  
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where P(Z)  may be expressed as a series of powers in l / x ,  with the leading term 
unity. Thus the dominant term of the expansion for b, is given as 

b, I,{r J(inR)) N - {A,/J(inRr)} e-q(inB)(l-r). 

For r < 1, the b,-terms are exponentially small compared with the a,-terms. This 
fact has an interesting interpretation: the vorticity perturbation of the flow 
outside the boundary layer does not appear in an expansion in powers of Reynolds 
number, but is postponed to the exponentially small terms of the expansion. 

Using these limiting expressions,? the dominant terms of a composite expansion 
for the stream function (R -+ 00) are 

Correspondingly, from (1.4) the vorticity becomes 

Note that this asymptotic form of the solution is not uniformly valid, holding 
outside a vanishingly small neighbourhood of r = 0. Obviously this limit leads 
to a boundary-Iayer type of solution, for which the vorticity diffuses exponentially 
away from the surface r = 1. 

The flow is of the type envisaged by Batchelor and others, having a constant 
vorticity core enclosed by the thin shear layer. The value of the vorticity in the 
core is proportional to the mean velocity on the boundary streamline. This result 
is just the linearized version of the exact root-mean-square value derived by 
Batchelor and was obtained previously by Squire (1956) by consideration of the 
linearized boundary-layer equations. Note also, that in the limit R + m  the 
streamlines are concentric circles, in contrast to those of Stokes flow which do not 
possess this polar symmetry. 

On the boundary streamline T = 1, (1.19) reduces to 

m 

w(  1 , O )  = 2A, + JR 2 4n A ,  ei@#+fn) for R -+ a. (1.20) 
,=l 

For the A, given by (1.11) corresponding to the square-wave distribution of 
velocity uo(l,O), the series in (1.20) can be recognized as a combination of 
generalized Riemann zeta functions as given by Hurwitz's formula (Whittaker & 
Watson 1952). The result is$ 

(1.21) 
a 1  

w(1,O) = -+- &R) 
77 7 - r  

t These limit processes are not necessarily valid when all terms of the series are present, 
depending on the rate of convergence of the A,,. 

$ The Hurwitz formula as derived by Whittaker & Watson appears to  be limited to 
Fourier coefficients of order n-'l-s' for s < 0. However, if the zeta function used here is 
regarded as a generalized periodic function in the sense of Lighthill (1962), the Hurwitz 
formula is applicable for all values of s. 
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where the periodic function Z(s,  x) agrees with the generalized Riemann zeta 
function in its fundamental period 0 < x < 1. Equation (1.21) can be written in 
an alternate form which lends itself to an interesting physical interpretation. 
Using the conventional series definition of the generalized Riemann zeta function, 
the difference of two such functions can be expressed as 

Extending this definition to include s = 4) an individual term of the series is 
recognized as the effect of one cycle of fluid rotation, the sum taken over all 
previous cycles in the history of the flow. This cyclic history of the flow causes a, 

r 

c2 

0 .+ 
U 

.* 

.9 
8 -  

F I ~ ~ E  2. Skin-friction distribution in boundary-layer limit for square-wave 
boundary velocity with u = an. 

thicker viscous layer than for ‘single-pass’ boundary layers. In  common with 
other boundary-layer problems, the skin friction has square-root singularities 
at  the discontinuities of surface velocity (0 = & Qa). The distribution of skin 
friction for the special case a = 8n is shown in figure 2; the broken curve is the 
leading term of the above expansion, representing the contribution of the last 
velocity jump encountered. 

The displacement thickness of the boundary layer is also of interest. Intro- 
ducing the boundary-layer co-ordinate 7 = ,/R( 1 - r ) ,  the asymptotic form of the 
stream function is obtained from (1.18) as 

The leading term represents a uniform flow outside the boundary layer, the 
vorticity of the inviscid core being negligible compared with that in the viscous 
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layer. The series is the excess of volume flux in the boundary layer over that of 
the uniform flow. Hence, defining a displacement thickness in the usual manner, 
we have 

(1.22) 

A positive value of 6" denotes a deficit of volume flux, and hence an effective 
displacement of the boundary inward toward the centre of the circle. The centre 
of the inviscid vortex core is shifted accordingly. Let x = -rsin8, y = rcos8. 
Then the co-ordinates of the centroid of the shifted inviscid-flow area are (to 
lowest order in 1/R) 

277 277 

x = 6*sinOd8; ij = -'s 6*cosOd0. 
T o  T o  

Substituting the series form of 6*, we find that all terms vanish except for 

(1.23) 

Note that for a symmetric boundary velocity distribution (the A,, all real), the 
vortex centre is shifted out along a 45' radius, independent of the shape of the 
distribution. This result holds only for the circular eddy, of course. 

n = 1; thus 
z = - L A , g i n ;  = - - e  1 A, -1. +an. 

@A0 @A0 

For the cosine distribution A, = A,, and 

6" = -(l/y'R)cos(B-)7T). 

Here the inviscid core remains circular as it is shifted off-axis. For other 
velocity distributions, however, the streamlines of the inviscid core become 
distorted as a result of the displacement. 

1.4. Discussion of results 

At this point it is instructive to evaluate the solution for a special case. Although 
the square-wave distribution of surface velocity permits simple formulae in 
terms of tabulated functions at the limits of both large and small Reynolds 
number, the full series is needed for finite values of R. To simplify the calculations, 
it  is desirable to select a single term of the Fourier series for the perturbation 
velocity; that is, we shall consider a cosine distribution of surface velocity. It will 
be seen that this distribution is sufficiently general to bring out the salient 
features of the flow. 

Perhaps the most interesting feature of the solution is the change of flow 
pattern with Reynolds number. This change is characterized by the shift of the 
vortex centre discussed above. Figure 3 shows the results of calculationst for the 
cosine distribution A, = A, = 4. For R = 0,  the vortex is centred on the line of 
symmetry 8 = 0, consistent with the symmetry of the biharmonic equation and 
the boundary conditions. The centre is displaced along the line of symmetry 
toward the point of maximum velocity on the boundary. This condition is a 

t For computational purposes, the modified Bessel function inIn(z,/i) is expressed in 
terms of its raal and imaginary parts ber,(z), bein(%). A short table of these functions is 
given by Dwight (1961). 
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result of continuity: the stream tubes must be narrower in the higher-velocity 
region at the top of the circle (19 = 0). As the inertia of the fluid becomes important, 
the flow is no longer symmetrical with respect to the boundary conditions. The 
vortex centre for low Reynolds number is shifted in the direction of the moving 
boundary. At  higher Reynolds numbers, the inertial effects become dominant 
and the vortex centre becomes aligned with the centre of the circle in the limit 
R-tm.  

I 

90' 

0" 

1 .o 0.8 0.6 0.4 0.2 0 

FIGURE 3. Effect of Reynolds number on location of vortex centre for 
cosine boundary velocity (A ,  = A ,  = 9). 

The curve labelled 'asymptotic expansion' in figure 3 corresponds to an 
expansion for the vortex-core location in powers of 1/R. Recalling from 5 1.3 that 
the b,,-terms of the stream function are exponentially small for r < 1, we have 

1/. N +Ao(l-r2)+Zu,rneins for r < 1, 

where the real part of 1/. is understood. The term in A, is the original solid-body 
rotation, while the series gives the perturbation of the core flow caused by the 
boundary layer on the wall; the leading term corresponds to a uniform flow, the 
second term a stagnation flow, and the higher-order terms yield successively 
more complicated flows necessary to represent the boundary-layer growth and 
decay. The asymptotic expansion of the a, was obtained in 5 1.3; we have 

where the CJn) are given by (1.17). For the present case only the al-term appears. 
The vortex centre then has the co-ordinates r*, 8" given by 

r* N (a,/A,I, tan 8" N - Im uJRe a,. 
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Although this type of expansion is formally correct for sufficiently large R, it is 
evident from the figure 3 that at  moderate R even the qualitative trend is not 
correct. This result is of significance with regard to practical application of the 
method of inner and outer expansions (Van Dyke 1964) to separated flows. 

The velocity distribution across the circular eddy is shown in figure 4 for 
several values of Reynolds number. The development of the flow is clearly 
indicated, from the rounded profile of the fully viscous type (R = 0) to the flat 

-1 0 1 
Tangential velocity, uo/ Qa 

FIGURE 4. Tangential velocity profile on line of symmetry (0 = 0) for cosine 
boundary velocity (A ,  = A ,  = 4). 

profile of inviscid type (R + a). In  the inviscid region (the flat part of the profile) 
the slope appears to be independent of Reynolds number, though the extent of 
this region varies markedly. This result is consistent with the boundary-layer 
displacement-thickness model discussed previously. A significant feature of these 
profiles is the hump which appears near the wall for large R. This persists even in 
the limit, R-too, in a manner reminiscent of Gibbs’ phenomenon for Fourier 
series. Physically this velocity over-shoot may be explained as the propagation 
of waves of vorticity from the surface inward through the boundary layer, and 
may be regarded as the origin of the residual vorticity in the inviscid core. This 
point illustrates the fundamental difference between recirculating flows and 
single pass flows. In  the former, a fluid particle in the boundary layer on one 
side of the eddy is accelerated by viscous shear. This added momentum is 
diffused away from the surface as the flow proceeds around the eddy. On the 
opposite side of the eddy, the shear retards the flow, setting up a diffusive wave 
of opposite sign. Hence, the humps in the velocity profile are just the residual 
effects of the periodic past history of the boundary layer. (The exact analogy of 
this linearized boundary-layer problem exists for one-dimensional unsteady 
heat conduction in an infinite slab with periodic surface conditions, and is 
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discussed in most books on heat-conduction theory; see, for example, Carslaw & 
Jaeger 1959.) 

The power dissipated by the Aow may be determined readily. The shear stress 
on the moving wall is given by 

The energy dissipated must equal the mechanical work performed by the moving 
boundary. Hence the power dissipated becomes 

Again restricting ourselves to the pure cosine velocity distribution, substitute 
the vorticity from (1.4). Carrying out the integration results in 

(1.24) 

where the real part is understood. This result holds for any R; it  is of interest to 
compare this with an expansion in powers of 1/R. As in (1.15) the quotient of 
Bessel functions can be expressed as 

Z ~ l ( W Z ( 4  = 2 + z#2(4 ,  

where q52(2) is given by (1.16) with coefficients from (1.17). Extracting the real 
part of #(J(iR)), the expansion for the power dissipation is 

(1.25) 

where the first few C, are 

c - 1  c - - 1  c-fb c-15 c-1-75 C - - U  
0 -  > 1 -  2 ,  2 -  8 > 3 -  8-7 4 -  1289  5 - 3 2 , " "  

This is the result which should be obtained by higher-order boundary-layer 
theory, as in the method of inner and outer expansions. Note that the terms 
R-2, R-4, R-6, . . . , do not appear in the series. 

Figure 5 shows the effect of Reynolds number on the power dissipated by the 
flow, as given by the complete solution (1.24) and by the leading three terms of 
the expansion in (1.25), labelled first-order, second-order, and third-order 
boundary-layer theory. We see that the third-order theory is quite good down to 
a Reynolds number of about 15. Since the next term of the expansion reduces 
the power dissipation, R PS 15 appears to be the limit of validity of higher-order 
boundary-layer theory (at least for this problem). By comparing with the results 
of the vortex-core calculation, it appears that the boundary-layer theory may 
be extended to lower Reynolds number for integrated quantities, such as average 
power, than for details of the flow field. The asymptotic variation exhibits the 
ljR and 11,lR behaviour typical of creeping flows and boundary layers, re- 
spectively. It is interesting that the power dissipation is given within 10 yo over 
the entire range of Reynolds number by the asymptotes, crossing over from the 
Stokes limit to the Prandtl limit at  R = 8. This remarkable result is made 
possible by the undershoot below the boundary-layer limit exhibited in the 
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figure. A similar result was obtained by the author (unpublished work) for 
Jeffery-Hamel wedge flow, the cross-over Reynolds number depending on the 
wedge angle for that case. 

---- Stokes approximation 
Exact $ 1  

I I I I I I I  I I I I I I I ]  

10 30 100 
Reynolds number, R = i2aa/v 

FIGURE 5. Effect of Reynolds number on power dissipation in circular eddy 
for cosine boundary velocity (A, = A,  = 4). 

1.5. Limitations of the analysis 

Although the present analysis reveals the development of a separated eddy with 
arbitrary distribution of velocity on the separation streamline, two major 
questions arise concerning the validity of the analysis: (1) the circular shape of the 
eddy permits a constant pressure flow at large Reynolds number and hence may 
not adequately simulate an eddy of more complicated shape, and (2) unknown 
non-linear effects may be lost by linearization of the equations of motion. Both 
of these questions are treated in $2,  in which numerical solutions of the full 
Navier-Stokes equations are obtained for a square cavity. As will be seen, the 
numerical solutions confirm the linear analysis to a surprising degree; however, 
certain minor features of the flow are revealed which do not occur in the linear 
theory for the circle. 

An estimate of the effect of the non-linearities can be made rather easily. In  
the high-Reynolds-number limit, our Iinearized problem for the circle reduces 
to the Oseen approximation for 8 boundary layer on an infinite flat plate with 
periodic boundary conditions. Now for the boundary layer on a semi-infinite 
flat plate, it  is well known that the Oseen approximation predicts skin-friction 
values that are 70% too high. However, if the equations are linearized with 
respect to the mean velocity in the boundary layer, in the manner of Lewis & 
Carrier (1949), the skin friction is given very accurately. Hence, the effective 
Reynolds number used in the linear theory should be based on an average 
velocity rather than on the maximum. Thus when the Reynolds number is based 
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on the maximum velocity and on the total depth of the cavity rather than the 
radius, a factor of about 4 should be applied to the values of R appearing in the 
linear results. It is appropriate here to recall that, according to the linear theory, 
the inviscid core rotates with the mean velocity of the bounding streamline com- 
pared with the root-mean-square value from Batchelor’s limit process. 

2. Numerical solution of exact equations of motion 
2.1. Preliminaries 

The analysis presented in $ 1  of this study reveals the development of the viscous 
structure of a recirculating eddy as a function of Reynolds number. However, 
the analysis was based on a linearized theory, and furthermore restricted to an 
eddy having a circular boundary. Consequently, certain features of the flow are 
not expected to be represented properly. The effects of the non-linearity and of 
non-circular boundaries are assessed now by considering numerical solutions of 
the full Navier-Stokes equations for a square cavity. 

The specific problem considered here is the steady plane flow of an incom- 
pressible Newtonian fluid in a square cavity bounded by three motionless walls 
and by a fourth wall moving in its own plane (see figure 6). Kawaguti (1961) has 
obtained numerical solutions of this problem for the range of Reynolds number 
R = 0 to R = 64 by use of a small digital computer. For a larger Reynolds 
number (R = 128) he was unable to obtain a convergent solution by his iterative 
procedure. Part 1 of the present work indicates that viscous effects would 
permeate the entire recirculating flow in this range of Reynolds number. Conse- 
quently to confirm or confute the linear theory, calculations at  higher Reynolds 
number are needed. Fortunately, convergent solutions are possible for any 
Reynolds number by making a minor change in Kawaguti’s iteration procedure. 

2.2. T h e  diflerence equations 

As indicated in figure 6, we introduce rectangular co-ordinates in the square 
cavity with origin a t  the lower left corner. The moving wall of length L is taken 
at the top, with motion from right to left with velocity V .  (This choice is con- 
venient since it results in positive values of the stream function.) Let X and Y 
be the co-ordinates normalized with respect to L, (X = x/L, Y = y / L )  and Y 
and Q be the non-dimensional stream function and vorticity , respectively 
(Y = @/LV, Q = wL/V).  Then the vorticity and stream function are related by 

VZY = - Q, ( 2 . 1 ~ )  

where V2 = a2/aX2 + a2/a Y2. We now let P be a non-dimensional total pressure 
(P  = (pT - p B )  L/pV = &RCpp) with reference to the pressure p B  at the centre 
of the bottom wall of the cavity. Then the Navier-Stokes equations can be 
expressed in the form (Lamb 1932) 

(2 . lb)  

(2 . lc )  
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where%== VL/v  is the Reynolds number of the problem.? Note that as R -+ 0, 
equations (2.1 b )  and ( 2 . 1 ~ )  take on the form of the Cauchy-Riemann equations, 
showing that s2 and P are complex conjugate functions in Stokes flow as discussed 
in 5 1. The three equations (2 .1)  suffice to determine the flow field; however, a 
simpler set of equations is obtained if the total pressure is eliminated. By cross- 
differentiating and subtracting (2.113) from (1 .2c) ,  we obtain the familiar vorticity- 

( 2 . l d )  

Equations ( 2 . 2 a )  and ( 2 . 2 4  will be used to define the flow field; the corresponding 
pressure distribution then follows from (2 .2b)  and ( 2 . 2 ~ ) .  

V 

1- 

1 c 

X 0 tL L 

I 
1 

L I 
x 2 

0 

FIGURE 6. Notation for square eddy. 

We now propose to replace this set of partial differential equations by a corre- 
sponding set of difference equations. Let the square cavity be covered by a lattice 
having square meshes of dimension h. For an interior point 0 of the lattice, we 
label the neighbouring points as indicated in figure 7. Then in the usual manner 
the Laplace operator V2 is replaced by the difference operator H ,  defined by 

The truncation error associated with this finite-difference operator is of order h2; 

H Y o  = YpI+Yz+Y3+Y4-4Yo. 

that is 1 
V2Yr--HT = O(hz).  

h2 

f In addition to static and dynamic pressures, the total pressure may include the energy 
of any scalar potential field. 

9 Fluid Mech. 24 
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Other operators having truncation errors of higher order are given by various 
authors (Collatz 1960); several of these were tried during the course of the study. 
However, the results using the more complicated operators were not significantly 
better for the test case at R = 0, and for large Reynolds number the computation 
time was increased. Consequently the formulation given here was used for all 
the results presented in this paper. 

FIGURE 7.  Notation for interior lattice points. 

Replacing all derivatives in equations (2.la) and (2.14 by the difference 
operator compatible with H ,  the following set of difference equations is obtained 
for an arbitrary interior point 0 : 

xu; + y2 + Y, + y4 - 4 y 0  = - h2fi0, ( 2 . 2 4  

Q* + SZz+ SZ, + Q,- 4Q0 = &B[(Y,-Y4) (Q1- SZ,) - (Yl -Y3) (a2- SZ,)]. ( 2 . 2 b )  

In a similar manner, we obtain the difference equations for the total pressure 
field. Considering the integral of ( 2 . l b )  and ( 1 . 2 ~ )  over a single mesh width, 
we have 

p, = P , - ; ~ R [ ~ ~ ( Y ~ - ~ ~ , ) + R , ( ~ ~ - Y P ~ ) I - ~ [ S Z ~ - ~ ~ + ~ ~ -  4, (2.2c) 

& - aR[ q ( y 2  - y 4 )  + Q4(yO - Tlz)] - $[a,- Q3 + QS- a,]. ( 2.2d)  

With these equations, knowledge of the Aow field permits a point-to-point 
calculation of the total-pressure distribution within the cavity. 

2.3. Boundary conditions 

The boundary conditions for the problem stated above are 

Y = a Y / a X = o  on X = o ,  O G  Y < 1, 

Y = a Y / a Y = o  on Y = 0 ,  o < X < l ,  

Y = a Y / a X = o  on X = l ,  o < Y < 1 ,  

Y = 0 ,  a Y / a Y = - i  on Y = l ,  O<X<1. 

These boundary conditions are treated by introducing a row of image points at a 
distance h outside the boundary. The values of Y are given ( = 0) at each boundary 
point, and the values \z. at the image points are related to those at the interior 
points by the value of the derivative at  the boundary. Thus if the point 0 is taken 
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as a boundary point on each of the fixed walls, respectively, the values at the 
image points are 

respectively. Similarly if Yo is taken on the moving wall, the image point has 

'zr, = y4- 2h. the value 

In this way the vorticity on the boundary can be computed from ( 2 . 2 ~ ) ;  thus for 
the fixed walls 

P3 = Yl,  q4 = Y,, q1 = Y3, 

- ( 2 / h 2 ) Y l  on X = 0, 

a, = [ - (2 /h  1 Y, on Y=O,  

- ( 2 / h 2 ) Y 3  on X = I, 

(2.3 a-c)  

and for the moving wall 

Q, = - (2/h2)  (Y4 -h )  on Y = 1. (2.3d) 

2.4. The relaxation procedure 

The difference equations ( 2 . 2 ~ ) ~  (2.2 b )  have been solved by a modified relaxation 
procedure. Defining the residuals &?(Yo), 9'( 0,) at the point 0 as the error in the 
difference equations at a given stage of the approximation, we have 

&?(Yo) = $[Y1+Y,+Y,+Y4+h2Q0]-Y, ,  ( 2 . 4 ~ )  

9(QO) = ~[Q,+Q2,+Q2,+Q4-$R{(y2-y4) 

- Wi-Y3) ( Q 2 -  QdII- 4- (2.46) 

Starting with both '4' and Q zero throughout the cavity, the corrected values are 

vh = Y O + K ~ ( ~ , ) ,  (2.5a) then computed from 

QA = Qo + K9(Qo) ,  (2.5b) 

where the relaxation parameter K has been introduced to afford some control 
on the iteration procedure. For a well-behaved system, one may choose K > 1 
to accelerate the convergence of the process. However, Kawaguti's work shows 
that the iteration procedure for our difference form of the Navier-Stokes equa- 
tions is not stable at  large Reynolds number for K = l .  Hence for large R we 
expect that K < K*, K* < 1, is required for stability; this expectation was 
confirmed by the computations, with upper and lower bounds on the critical 
value K* determined as a function of Reynolds number by trial and error (see 
table 2, $2.7) K* appears to be fairly insensitive to mesh size, but strongly 
dependent on the precise method of iteration used. In  each cycle of these 
calculations, points were taken in each row progressively from left to right, with 
the rows taken in order from top (moving wall) to bottom; corrected values of 
Y and Q were used as soon as available. On the other hand, if the corrected values 
obtained during a given cycle are not used until the following cycle, the value of 
K* will be considerably less than the value given in table 2. 

Actually the stability requirement K < K* may be motivated by analogy to 
the heat-conduction equation. The sequence of values Y(n), Q(") may be regarded 
as a quasi-time dependent problem. (aKh2) may then be interpreted as a quasi- 

9-2 
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time step. As is well known, for stability of the heat-conduction equation the time 
step must be chosen smaller than a critical value; thus following Collatz (1960) 
for the one-dimensional problem 

&K = aAt/h2 < 8, 

R 
0 

10 

I00 

200 

400 

700 

1000 

h K 

::q 
i 

0.033 1.0 
0.025 
0.020 

0.100’ 

0.033 1.0 
0.050 

0.025 
0.020 

0.100 
0.050 
0.033 0.7 
0.025 
0.020 

0.100 0.7 
0.050 0.7 
0.033 0.5 
0.025 0.5 

0.100 0.5 
0.050 0.4 
0.033 0.4 
0-025 0.5 

0.100 0.1 
0.050 0.3 
0.033 0.3 

0.100 0.2 
0.050 0.3 
0.025 0.2 

i 

%ax 

1 : :: ::I: 
i 
, 5 x  10-6 

1 x 10-6 
1 x 10-6 

1 x 10-6 
1 x 10-6 
1 x 10-6 
1 x 10-6 
1 x 10-6 

5 x 10-6 
1 x 10-6 
6 x 10-6 
5 x 10-6 
3 x 10-61 

5 x  10-6 
5 x 10-6 
5 x 10-6 
.5 x 10-6 

5 x 10-6 
Fjx 10-6 
9 x  10-6$ 
5 x 10-6 

5 x 10-6 

i 
i 
I 

2.4 x 10-51 

s x 10-51 
O X  10-41 

1-3 x 

J 

61 
1GP 
348 
663 

1024 

79 
234 
499 
856 

1030 

117 
498 
7 62 

1282 
20001 

106 
375 

1302 
2236 

137 
632 

2407 
15001 

1378 
30004 

1000$ 
soot 
5001 

T v c t  Q*ct - c,J 
0.0981 3.029 0 
0.0992 3.152 0 
0.0997 3.179 0 
0.0998 3.200 0 
0.0998 3.201 0 

0.0978 3.028 0.1162 
0.0994 3.155 0.1378 
0.0999 3.187 0.1465 
0.1000 3.205 0.1493 
0.0999 3.204 0.1483 

0.0784 2.854 0.0850 
0.0955 3.136 0.1561 
0.0999 3.150 0.1745 
0.1015 3.143 0.1810 
0.1022 3.145 0.1841 

0.0563 2.486 0.0364 
0.0868 2.639 0.1398 
0.0987 2.605 0.1775 
0.1032 2.607 0.1906 

Oscillations in solution 
0.0932 0.0675 2.170 

0.0923 2.080 0-1531 
0.1017 2.142 0.1793 

Divergent 
0.0414 5.410 - 
0.0783 1.799 0.1184 
- - - 
- - - 

t See figure 11 for co-ordinates of vortex contre. 
$ These cases wero tenninated by the pre-selected number of iteractions. 

TABLE 2. Properties of finite-difference solutions 

where a is the thermal diffusivity in the heat-conduction equation. (For the 
two-dimensional problem, a similar analysis leads to K < l.)? This value cannot 
be applied to the Navier-Stokes equations, of course, since the analogy is far 
from exact. However, the qualitative behaviour appears correct. 

t This result is for the ‘explicit method’, in which the time derivative is represunted by 
the forward difference. It is well known to numerical analysts that the ‘implicit method’ 
in which the time derivative is represented by a backward difference, is inherently more 
stable. Hence in our calculations, use of corrected values in the mesh as soon as available 
corresponds to  a mixture of explicit and implicit methods, allowing a larger value of K * .  
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2.5. Limiting solutions for a square 

Before proceeding with the description of the numerical results, the limiting 
forms of the solution should be considered. In  the Stokes limit (R + 0) the 
governing equations (2.1) reduce to the biharmonic equation. For a rectangular 
boundary, this equation can be solved by elementary methods for certain types of 
boundary conditions common in the literature of elasticity. For the conditions 
of the present problem, an analytical solution in closed form is not possible by 
standard methods. However, the square cavity was treated by following the work 
of Muskhelishvili ( 1963), employing conformal mapping procedures. To obtain 
a solution, the mapping function was approximated by a finite number of terms 
of its infinite series, providing a polynomial approximation to the solution in the 
transformed variable. By comparing solutions truncated at  different number of 
terms, it was decided that accuracy obtained by this method is worse than that of 
finite-difference solutions. Hence the analysis is not presented here. 

The high-Reynolds-number limit (R --f co) is more important, since it cannot 
be attained directly by the numerical programme. According to the uniform 
vorticity model, the stream function must satisfy the following Poisson equation 

V2(Y/Q) = - 1. (2.6) 

The stream function must vanish along the boundary, velocity slip at the wall 
permitted by the thin boundary layer in the limit R + co. Hence for a square 
cavity we require 

X = O ,  X = l  for O < Y < L ,  
Y = O ,  Y = l  for O < X < L .  

Y ? = O  on 

This problem is solved easily by use of the finite Fourier transform, defined as 

F = Y(X, Y )  sin (pnX)  dX. L1 
The solution then becomes 

m -  
Y? = 2 C Y(Y,p)sin(pnX). 

p=1 

By use of (2.7) the differential equation (-6.2) is transformed to 

Solving this equation subject to the prescribed boundary conditions, leads to the 
following form for the stream function 

Y(X, Y )  = - 4Q c ' l - ( - l ) P 1 [ t a n h ~ p n s i n h ~ ~ Y  - 
7T3 P = l  2p3 

- (eosh ,on Y - l)] sin pnX. (2.10) 

By differentiation, the velocity components may be obtained. In particular, the 
inviscid flow velocity at the surface is 

tanh i p n  sin p n X .  (2.1 1) 
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Now by making use of the equality (0 < X < 1)’ 

--sin(Zn-l)nX = log (0 cot 0) do  + +nX[ 1 - log QnX], 
m 1  c 

n = l  (27L- 1 ) 2  

the series can be rewritten in a form more convenient for calculations 

(2”) OL = , (~04nxlog(o~ot f9)do+~nx[ l - log  & n X ]  

1 m 

0 0.1 0.2 0.3 0.4 0.5 

X J L  

FIGURE 8. Inviscid velocity distribution on boundary of square eddy. 

Note that the modified series converges extremely rapidly, only two or three 
terms giving sufficient accuracy for graphing. The resulting values of inviscid 
velocity are plotted in figure 8. It is noteworthy that no change of sign occurs; 
that is, no secondary eddies exist. As will be seen, this result is the most serious 
failure of the uniform vorticity model. From Batchelor’s model (assuming the 
pressure gradient to have no influence on the mean value, the root-mean-square 
of the velocity is constant across the viscous layer. A t  the surface the mean- 
square value is just tV2; hence squaring the series in (2.11) and integrating 

Thus in the inviscid limit !2 -+ 1.886. 

centreline of the square. From (2.10) we find 
For later convenience, we also obtain the velocity distribution on the vertical 

Summing the first term gives 

4 m  1 (u“) = (4- Y ) - -  C ----sech;t-(Zn- l )ncos (Zn-  1)n-Y. (2.13) szv nzn=l (2% - 1 ) 2  
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The series in (2.13) is rapidly convergent, so that this form is convenient for 
calculations. Note that the series expresses the deviation from solid-body 
rotation, caused by the square boundary. 

2.6. Numerical results 

The relaxation calculations were carried out on an IBM 7094 digital computer, 
using floating-point arithmetic. After an exploratory period during which various 
finite-difference formulations were used, the procedure outlined previously was 
settled upon as being a satisfactory method, characterized by simplicity of 
program logic, speed of calculation, and stability of the iterated computations. 
The program was then modified to include an integration subroutine to compute 
the total pressure distribution from equations (2.1), using the final iterated flow 
field. In  addition, interpolation routines were added to determine the vortex 
centre and to compute automatically the loci of constant values of the stream 
function, vorticity , total pressure, and later, the temperature. (An automatic 
plotter became available during the course of the study, but was not used since 
most of the calculations had been completed.) The relaxation portion of the 
program was arranged so that computations are terminated when the maximum 
residual gmax in the mesh is reduced below a predetermined value, or when the 
number of iterations J exceeds a predetermined value ; amax < 5 x 104  was 
usually required for convergence. However, the number of iterations required 
for this degree of convergence increased drastically with Reynolds number. This 
effect is clear from table 2 (see 5 2.4), which summarizes the conditions covered 
by the calculations. 

As indicated by table 2 ,  stable solutions were obtained for Reynolds numbers 
as high as 1000, the highest value attempted. However, as Reynolds number 
increases, the convergence parameter K decreases, thus increasing the iterations, 
and simultaneously the mesh size must be decreased to attain the same degree of 
accuracy, owing to the diminishing thickness of the viscous layer. Hence the 
computing time becomes excessive for large R. In this study the maximum 
machine time allowed for one case was arbitrarily set at about 30 min. ; this limita- 
tion permitted accurate solutions to be obtained for R < 400, which is sufficient 
for our present purposes.? 

Consider now the properties of the convergent solutions. The solutions 
discussed here are representative of the most accurate solution obtained for 
each case; the question of convergence with respect to both iteration and mesh 
size is deferred to 5 2.7. 

The development of the flow with Reynolds number is shown in figure 9 at 
three conditions: R = 0, 100, 400. The streamline pattern (figure 9(a))  is only 
slightly affected by Reynolds number; however, the shift of vortex centre with 
increasing R is clearly evident, first in the downstream direction (of the moving 

t The running time in minutes of the present FORTRAN program on an IBM 7094 
computer can be calculated as 5J/ha x 10-8. Although this performance could bo improved 
considerably, no such attempt was made since an improvement by at  least an order of 
magnitude would be required to obtain accurate solutions at a significantly higher Reynolds 
number, say R = 1000. 
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R=O K = O  

FIGUEE 9. For title see facing page. 
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R=O 

R = 400 

( c )  Static pressure 

FIGURE 9. Properties of viscoi JS 

I< = 400 

(d) Total pressure 

eddy in square for h = 0.025. 
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boundary) and then toward the centre of the square. This trend shown by the 
numerical results for the square is remarkably similar to that of the analytical 
solution for the circle, as shown in figure 3, especially if the Reynolds number of 
the linearized analysis is modified by the factor of 4 suggested in $ 1 .  

The vorticity distribution (figure 9 ( b ) )  provides a stronger measure of the effect 
of viscosity. The symmetric pattern at  R = 0 is due to the vanishing of the 
convection terms in (2 .14 .  However at  R = 400 these terms have begun to 
dominate the flow, producing a core of nearly uniform vorticity. Note the strong 
variation of vorticity in the boundary layer, especially evident along the top and 
left side of the cavity. The interaction of convection and viscous diffusion of 
vorticity in the viscous annulus is indicated by the ‘stretching’ of the contours 
in the direction of flow. Note that the value of vorticity at  the vortex centre, 
indicated by ‘v.c.’ in figure 9, ranges from s1 = 3.20 at R = 0,3.14 at R = 100, to 
2.15 at R = 400; this sequence compares well with the limiting value s1 = 1-89 
obtained by use of Batchelor’s model. 

The static and total pressure contours are shown in figures 9(c) and 9(d) .  
In  the completely viscous limit, the static and total pressure become identical 
and show no resemblance to the streamlines. Since the pressure is then a harmonic 
function, the contours cannot be closed but must end on the boundaries. Con- 
versely, for the inviscid limit, total pressure is conserved on streamlines, so that 
the contours of total pressure should become identical to the streamlines. This 
development from fully viscous to inviscid flow is indicated clearly by figure 9 (d). 

At R = 100, a very small inviscid core has developed around the vortex centre, 
while at  R = 400, the inviscid core has grown to a diameter about 4 that of the 
cavity.? From these plots, we conclude that the total pressure distribution is 
the best indicator of the degree of viscous and inviscid flow. The interaction of 
convection and viscous diffusion of total pressure along the streamlines is 
indicated just as for vorticity. Actually, in steady flow, the total pressure obeys 
a diffusion equation with a ‘source’ term representing a viscous loss propor- 
tional to the square of the vorticity, 

Hence, in regions of highly rotational flow, the total pressure ‘streamers’ must 
be shorter than in those of small vorticity. This effect can be seen by comparing 
figures 9 ( b )  and 9 (d). It is also interesting to note that in the upper corners the 
static pressure retains its asymmetric singularities over the entire range of 
Reynolds number, even though taking on a symmetric distribution in the main 
body of the flow. 

A striking feature of the flow field is the growth of the secondary eddies 
appearing in the bottom corners of the cavity (figure 9(u)). These triangular- 
shaped eddies, present at  all Reynolds number, have a diameter of about 10 yo 
that of the cavity a t  R = 0. However, at R = 400, the upstream eddy has grown 
to about 6 the diameter of the cavity, although the downstream eddy is relatively 

t The thickness of the viscous layer for values of Reynolds number as high as 400 is 
explained by the infinitely long history of recirculation, as discussed in $1. It may be 
noted that the boundary-layer thickness is given quite accurately by the linear theory of $ 1. 
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unaffected by Reynolds nur4ber.t Moffatt (1964) has shown that a self-similar 
solution of Dean & Montagnon (1949) for Stokes flow in a corner exhibits 
secondary eddies of this type. Assuming a solution of the form 

Y = rAg(B), 

where r is radius and 8 the polar angle measured from the corner, Dean showed 
that h is real for the interior angle of the corner a greater than a critical value 
a* FZ 123". For more acute angles, A becomes complex. Moffatt pointed out the 
physical significance of this result; namely, for a < a* an infinite sequence of 
contra-rotating eddies exists in the corner, the size and strength of these eddies 
vanishing as the corner is approached. For a > a* the flow does not re-circulate. 
It is of interest to compare the secondary eddy of the present numerical solution 
with the self-similar solution of Dean & Montagnon for R = 0. Following Moffatt 
(and correcting an obvious error) the separation streamline between adjacent 
eddies is given by the equation 

r = ro exp { - ( l / q )  [ # ( O )  - +;. + n77]} 

$(8) = arg (cos A8 cos ( A  - 2) a - cos ( A  - 2) 8 cos Aa), 

where ro is an arbitrary scale factor, and h = (1  + p )  + iq, where p 2: 8*60/n and 
q = 3.541;. for a right-angle corner. We represent the internal structure of the 
eddy by the contour !2 = 0, which may be expressed by a similar equation 

r = r, exp {( l /q)  [arc tan (tanh qO tan ( p  - 1)  O)]), 

where r, is the radius of the contour !2 = 0 on the centreline 0 = 0 of the corner. 
Either of the scale factors r,, and r, may be chosen arbitrarily, the other then 
being fixed by requiring the separation streamline and the zero-vorticity contour 
to coincide on the walls. For purposes of comparison, the free scale factor is 
chosen to make the separation streamline coincide on the corner centreline Y = X 
with that obtained from the relaxation solution. The comparison is shown in 
figure 10 for the large corner eddy at  R = 400. The agreement is seen to be very 
good, indicating that the secondary eddy is completely viscous in nature, even 
though the primary eddy is predominantly inviscid. This conclusion is borne 
out by the magnitude of a Reynolds number R, characteristic of the secondary 
eddy, defined for convenience in terms of the circulation around the secondary 
eddy (R, = r lv ) .  Integrating the vorticity over the area of the secondary eddy 
yields R, z 1.6. This side-by-side existence of an eddy accurately described by 
Stokes flow with a nearly inviscid primary flow is one of the more interesting 
results of this study. Of course, at  sufficiently high Reynolds number, the 
secondary eddy also would become inviscid in accordance with Batchelor's 
theorem for recirculating flows. viscous effects contracting further in the 
hierarchy of corner eddies. 

The structure of the flow in the primary eddy is shown most clearly by a graph 
of the velocity profile across the eddy. In figure 11, velocity profiles are compared 

t The terms upstream and downstresm here refer to the flow in the primary eddy, not 
the moving wall. 
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FIGURE 10. Structure of secondary eddy. - Self-similar. Stokes flow; 
0, relaxation solution for square (R = 400, h = 0.025). 
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FIGURE 11.  Velocity profiles on vertical centreline of square eddy. 
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for severalvaluesof Reynoldsnumber, together with that for the uniformvorticity 
model, here labelled R = co. The trend from the rounded profile for R = 0 to the 
flattened profiles at  high Reynolds number is clear. By comparing these results 
with figure 4, i t  is seen that the dominant features of the flow in the primary eddy 
are predicted with remarkable fidelity by the linearized analysis (again recall the 
factor of 4 on Reynolds number owing to the different definition of R and to the 
use of a mean velocity in the linearization). Note in particular the thinning of 
the boundary layer with increasing R and the velocity overshoot near the upper 
wall at  R = 400. In  contrast to the linear theory, however, it seems clear that the 
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FIGURE 12. Effect of Reynolds number and mesh size on location of vortex centre. 

growth of the secondary eddy in the bottom of the square cavity will prevent the 
vortex centre from approaching the geometric centre of the cavity. It was found 
that for large R the mesh size has a strong influence on the location of the vortex 
centre (as well as on the entire flow field) as indicated in figure 12. Since con- 
vergence of the finite difference solutions is involved, the discussion of the 
vortex centre is deferred to  the following section. 

2.7. Validity of the finite-difference solutions 

In obtaining the results presented here, it became apparent that completely 
misleading results could be obtained unless exceptional care is taken regarding 
convergence of the numerical solution. This question of convergence has several 
parts : 

(a)  How small a mesh must be chosen to ensure accuracy to the desired 
number of decimal places. 

(b)  For given mesh, to what magnitude must the residuals be reduced. 
(c) When using a fine mesh, how many significant figures must be carried, 

owing to the small differences of the function relaxed. 
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Taking these questions in reverse order, eight significant figures were carried in 
all calculations, in order to obtain a solution accurate to 4 significant figures. By 
evaluating the differences at typical points of the solutions obtained, it was 
determined that this degree of precision is sufficient for a mesh of up to about 
50 x 50 points. For a finer mesh the differences become so small that the conver- 
gence criterion used (191 < for example) can be satisfied for ‘solutions’ 
of less than the desired degree of accuracy. 

The choice of residual size for convergence was empirical; by observing the 
change of solution as the residuals were reduced, it was possible t o  estimate a 
satisfactory cut-off value of 9. (It should be mentioned that after the first 
several iterations, the maximum residuals were reduced very slowly, changing 
sign periodically, with a period of the order of 200 to 500 iterations, depending 
on the Reynolds number.) Convergence with mesh size was checked by com- 
paring calculations for various h. Table 2-f contains results for several quantities 
evaluated at  the vortex centre. Thus, comparing values of YeC and !& it is 
evident that Convergence to 4 decimal places has been achieved except at  the 
highest Reynolds numbers. At R = 400, the accuracy becomes somewhat 
questionable, although extrapolation of Y,, to h = 0 indicates a deviation of the 
order of 10 yo. It is remarkable that the vorticity is quite insensitive to h for all 
values of R. Note also the trend toward the theoretical limit L2 = 1.886 as R --f 00. 

In addition t o  the variation of the level of values, the entire flow field is 
strongly affected by mesh size for the larger values of R. This effect is illustrated 
in figure 12, in which the co-ordinates of the vortex centre are plotted as a 
function of Reynolds number for the various values of h. It is clear from the 
figure that completely erroneous conclusions can be drawn if the mesh size is 
too coarse. For example, results for the 10 x 10 mesh used by Kawaguti indicate 
that the vortex centre approaches the downstream corner of the moving wall 
monotonically with increasing R, while from table 2 ,  the values of ‘Fee would 
indicate a progressively weaker flow recirculation. However, for a finer mesh, the 
vortex centre instead approaches the centre of the square for large R, just as for 
the circular eddy of § 1, and the strength of the flow field (Y,J remains practically 
constant. These results emphasize the importance of a careful evaluation of the  
convergence of numerical solutions. 

The line drawn from the centre of the square in figure 12 is the asymptote of 
the vortex centre calculated from the linear theory of § 1, by evaluating the 
displacement thickness of the boundary layer on the boundary of the square. 
The good agreement with the numerical results for a fine mesh is surprising 
in view of the large secondary eddy at the bottom of the square cavity. 

2.8. The thermal problem 

The distribution of thermal energy within the recirculating flow is closely 
analogous to that of vorticity. Owing to the different boundary conditions, the 
distributions of temperature and vorticity within the boundary layer must differ, 
but in the limit R + 00, both will tend to become uniform as the inviscid core 

-f See $2.4. 
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develops (see below). We now consider the detailed development of the thermal 
field corresponding to the flow field solutions already discussed. 

Following Howarth (1953)) the energy equation for a fluid of constant density 
may be written in the form 

pcp DTIDt = V ( K V T )  +,uCD, (2.14) 

where cp is the specific heat at  constant pressure, K the coefficient of thermal 
conductivity, and CD the dissipation function. In the Navier-Stokes formulation 
for plane two-dimensional flow 

(2.15) 

Consider the integral of (2.14) around the closed streamlines. Putting g, 9 as 
orthogonal streamline co-ordinates and W as the magnitude of the velocity, 
the operator D/Dt becomes (W/hl) (dldt;) for steady flow. We shall assume a 
fluid for which the properties cp ,  K ,  and p are constant. Hence we find 

(2.16) 

which holds on any closed streamline for any value of Reynolds number. Now 
in the inviscid limit (R -+ cg holding Prandtl number fixed), (2.14) implies that 
the temperature is constant along streamlines; i.e. T = T($). Then noting 

and 

we find V2T = W2T"($) - d"($). 
The circulation I' is given by 

(2.17) 

SO 

This result, together with (2.17)) allows the integral condition (2.16) t o  be written 
in the form 

(2.18) 

For circular streamlines (solid body rotation), the dissipation function vanishes 
identically. Hence the integral in (2.18) is zero, and (since I7 = 4n$ for that case) 
we may integrate to obtain 

I f  the vortex centre occurs inside the flow field (singly connected region), B = 0 
and the temperature of the inviscid core is distributed uniformly. Now consider 
non-circular streamlines: if we consider the flow to be solid-body rotation plus 
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a perturbation due to non-circular boundaries, Q, is of second order in that 
perturbation. Consequently, even for a non-circular eddy, the temperature of 
the inviscid core will be uniform to first order.? 

The thermal structure of the eddy at finite Reynolds number can be studied 
by a linearized analysis as carried out in Q 1 for the flow field, with similar results 
for the development of the thermal boundary layer. The dissipation function 
vanishes in such a first-order treatment, so that temperature and vorticity are 
exect analogues. Since no new results are gained by such an analysis, we turn 
instead to the 'exact' finite-difference solutions of the energy equation. 

Referring to figure 7, we define the residual 4;(Tn) as the error at  the point 0 of 
the difference equation corresponding to (2.14) 

9(T') = ~[Tl+T2+T3+T4]-To-&aR[(Y, -Y4)  (T1-T3)-(Yl-Y3) (!Z!2-!7'4)1 
+ ( ( T V ' / ~ ~ ' C ~ )  +Y, -UpG -Yrg)' + (Y1 + Y 3  - Y2 -Y4)']. (2.19) 

Then at  each stage of the iterative calculation, corrected values are computed 

Th = T, + K.Y(q).  from 

For convenience the relaxation parameter was taken to be that for the flow field 
calculations, and the relaxation process for T was carried out simultaneously 
with that for the flow field. 

Calculations were carried out for two cases, depending on the heat transfer at  
the fixed walls. Case A is characterized by a large temperature difference 
between fixed and moving walls, so that the dissipation term is negligible. In 
this case, the boundary conditions were prescribed as 

(2.20 a)  
Case A: T(0,  Y )  = T ( X ,  0) = T(1, Y )  = 0, 

T ( X ,  1) = 1, @(X, Y )  ZE 0. 

We shall call this case the ' cold wall condition I. The effect of the dissipation term 
is demonstrated by case B, for which the fixed walls are presumed to be adiabatic, 
while the temperature of the moving wall is held constant. The temperature is 
now put in the normalized form (c ,T/V2) ,  and the boundary conditions are 

Case B: T ( X ,  1) = 0, Q,(X, Y )  + 0, i 
(2.206) 

x=o X=l 

This case will be called the 'adiabatic wall condition'. In  both cases, the Prandtl 
number w&s taken as unity for convenience. 

Sample solutions are presented in figure 13 by means of plotted isotherms for 
R = 0, R = 100, and R = 400. For Stokes flow, the temperature distribution is 
symmetrical about the vertical centreline of the cavity, in the same way as the 
flow field. At T = 400, the isotherms tend to be convected by the flow, forming 
a pocket of uniform temperature around the vortex centre. For condition A 
(cold wall), the value of 5 obtained as the root-mean-square of the surface tem- 
perature (analogous to vorticity) agrees very well with that of the inviscid core. 

7 A similar analysis shows that the temperature is uniform to first order in axisymmetric 
flow; this is in contrast to the vorticity distribution, which varies linearly with radius. 
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For condition B (adiabatic wall), the region of nearly uniform temperature is 
much larger, significant variations occurring only near the downstream corner 
of the moving wall. It is noteworthy that the bottom and upstream walls have 
nearly uniform temperature, and that the maximum temperature occurs near 
the downstream corner o f  the moving wall. 

(a )  R = 0, h = 0.025 

( b )  R = 100, h = 0.025 (d )  R = 400, h = 0.033 

FIGURE 13. Isotherms for viscous eddy in square; (a) ,  (b ) ,  (c)--condition A 
(cold wall) ; (d)-condition €3 (adiabatic wall). 

The temperature profiles on the vertical line through the vortex centre 
( X  = 0.567) are shown in figure 14 for R = 400, with both cold and adiabatic 
wall conditions. The constancy of the temperature in the inviscid core is clearly 
evident, 8s well as the thin thermal boundary layer on the moving wall. 

The distribution of non-dimensional temperature gradient (heat flux) along 
the wall is of considerable interest. Figure 15 ( a )  shows the gradient aT/aY on the 
moving wall for R = 0, 100, and 400 for condition A (cold wall). The heat flux is 

I 0  Fluid Meoh. 24 
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distributed symmetrically for Stokes flow, but a t  the higher Reynolds numbers 
a boundary-layer type of distribution is evident, falling from the singularity at 
the upstream corner to a minimum value very near the downstream corner. 
Sufficiently near the corner conduction dominates the heat-transfer mechanism 
and the asymptotic temperature distribution is T = 1 - (2B/n), where 8 is the 

1 .o 
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0 0.2 0.4 0.6 0.8 1.0 
Y 

FIGURE 14. Temperature profiles on vertical line through vortex centre. 

angle measured from the moving wall. This behaviour is clearly evident in 
figure 13 for R = 0 and R = 100. Thus the heat flux is singular like X-l and 
(1 - X)-1. Of course the difference approximation fails near these singularities, 
but the accuracy of the difference solutions can be assessed by comparing the 
results for h = 0.050 ( + ) with those for h = 0-025( x ) at R = 100. The finer mesh 
results in higher values of the heat flux near the corners, the coarse-mesh error 
persisting to about six intervals from the upstream corner. Oscillations of the 
heat flux can be seen near the downstream corner. These oscillations correspond 
to the ‘troughs’ in the isotherms of figure 13, and are caused by convection of the 
temperature away from the moving wall. Obviously a fine mesh is needed to 
adequately represent this region. It is interesting to note that at  high Reynolds 
number ( R  2 400) the use of a coarse mesh (h  = 0.10) produced oscillations of 
the stream function itself; these oscillations of Y? would be interpreted as discrete 
eddies, since they form closed streamlines. With the use of a finer mesh these 
oscillations do not appear, and must be regarded as a property of the difference 
equations but not of the original Navier-Stokes equations. With regard to the 
temperature gradient, a pronounced minimum must occur at the trough in the 
isotherms, and if the oscillations of the difference solution for R = 400 are 
smoothed out, a trend of this type is observed. 

In 0 1 of this study, an analytical expression in closed form, equation ( 1.21), 
was obtained for the vorticity at  the boundary of a circular eddy in the boundary- 
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layer limit. Since temperature and velocity are analogous quantities in the 
boundary layer for CT = 1 and CD = 0, the same expression should provide an 
approximation to the heat flux in the square for condition A (cold wall). However, 
to apply this formula, the angular velocity Q of the basic flow in the circle must 
be chosen. In  the limit R --f co, the linearization of Q 1 corresponds exactly to an 
Oseen linearization of the boundary-layer equations. As discussed by Lewis & 
Carrier (1949), the basic unperturbed flow need not be that outside the boundary 
layer, but instead should be a suitable average. For the present problem, the 
basic flow is chosen arbitrarily as 8 V ;  that is, a rough average of the velocity in 
the boundary layer near the moving wall. This choice is motivated by the fact 
that the highest heating rates occur in this region, which therefore merits the 
closest approximati0n.t With this choice, and in the notation appropriate to the 
square, the temperature gradient at  the wall for case A is obtained from Q 1 

where R = VL/v,  Z(+, 6 )  is a periodic function which agrees with the generalized 
Riemann zeta function in its fundamental period 0 < 6 < 1, N is the non- 
dimensional distance measured inward from the wall ( N  = 1 - Y on the moving 
wall), and 6 is the non-dimensional distance measured along the perimeter of the 
square starting at the upstream corner of the moving wall ( f ;  = X/4L on the 
moving wall). 

The solid curve in figure 15 (a)  is a plot of (2.21) for R = 400; the agreement 
with the finite-difference values is excellent, considering the nature of the 
approximations involved. Equation (2.21) exhibits a singularity - X-4 for 
X > 0 compared with X-l for the full Navier-Stokes equations; consequently it 
predicts values near the corner higher than the bounded values of the numerical 
solutions. However, the difference is of the same order as that indicated for 
different mesh size at R = 100. We conclude that (2.21) is a t  least as accurate as 
the finite difference results for R = 400. Of course equation (2.21), as well as any 
boundary-layer calculation, will fail to predict the recompression heating a t  the 
downstream corner. 

The heat flux to the fixed wall is presented in figure 15 (b )  as aT/3N vs running 
length 5 for case A (cold wall) at  R = 0, 100, and 400. (To interpret the figure, 
imagine the sides of the square unfolded to lie in the plane of the bottom wall.) 
The symmetric solution for Stokes flow is evident, with the temperature gradient 
increasing with increasing Reynolds number, except far downstream where the 
trend is reversed. This reversal is caused by conduction of heat upstream from the 
hot moving wall; the region affected by this upstream conduction must shrink 
with increasing Reynolds number, as indicated by the numerical results. The 
solid curvein figure 15 ( b )  is equation (2.21) evaluated for R = 400. The boundary- 
layer approximation is inadequate to provide the details of the heating near the 
bottom of the square, especially near the corners, owing to the low flow velocities 

t In another study (Burggraf 1965), the inviscid-core boundary-layer model was applied 
to  open cavities of arbitrary depth. In  that case, the emphasis on the moving boundary 
is even more important since the vorticity of the inviscid core vanishes with increasing 
depth in a single eddy model. 
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there. However, it is significant that the heating near the centre of the bottom 
wall is approaching the boundary-layer value. It is probable that for shallow 
cavities (compared with the square) the boundary-layer theory would yield 
satisfactory results for heat transfer to the bottom wall a t  points sufficiently 
removed from the corners. For deeper cavities, the growth of the secondary 
corner eddies would seem to prevent the formation of a true boundary layer 
anywhere along the bottom wall. On the downstream sidewall X = 0,  the 
temperature gradient actually overshoots and then roughly parallels the 
boundary-layer curve before the ultimate rise near the hot moving wall. The 
boundary-layer theory would be expected to be valid over much of both side- 
walls, and this is verified by the results. It is gratifying that equation (2.21), 
derived by means of linearized analysis of a circular eddy, provides a satisfactory 
determination of conditions in the square. 

2.9. Regated work: 

Since completing the work described here, the writer has come across several 
related papers. Professor Van Dyke kindly drew my attention to a Russian paper 
(Simuni 1964) in which numerical solutions of the Navier-Stokes equations were 
presented, both for rectangular cavities (the square considered here being a 
special case) and for channel flow with forward and backward facing steps. The 
solutions were obtained by considering the large time limit of the unsteady 
equations of motion; as remarked earlier, this procedure is nearly equivalent to 
the relaxation procedure used here. Simumi presents ‘solutions ’ for Reynold 
numbers as high as 1000, showing isolated eddies within the flow. Results of this 
type were obtained by this author as well, when attempting to carry out calcula- 
tions at high Reynolds number (R  = 700,1000). Since the same type of behaviour 
could be obtained at  lower Reynolds number (R Q 400) by use of a coarse mesh, 
but not when using a fine mesh, it is this writer’s opinion that Simuni’s anomolous 
results are properties of the difference equations with coarse mesh but not of the 
Navier-Stokes equations (Simuni’s minimum mesh size was for R = 1000, 
which the present study has shown to be quite inadequate even at  R = 400). 

Professor Kawaguti has provided this writer with a report on some numerical 
solutions for the recirculating flow in a square carried out at the University of 
Wisconsin (Greenspan et al. 1964). Solutions were obtained for Reynolds number 
up to 256 with meshes as small as A. Because of the coarse mesh, the vortex 
centre tends erroneously toward the downstream wall, as shown ip figure 12. 
Since Greenspan’s main interest was in the numerical procedure itself, his 
solutions were presented only as plots of $ and w. For the purposes of the present 
paper, a more detailed analysis was necessary. 

An analytical study of the recirculating flow in a square based on Batchelor’s 
model of an inviscid core matched to a surrounding shear layer has been carried 
out by Mills (1965). His analysis was much like that of Squire (1956) but based 
on the Von Mises form of equation.? The results obtained are quite similar to the 

t The Von Mises formulation has the virtue of predicting the circulation of the inviscid 
core as the root-mean-square surface velocity; this result is exact for a circular eddy, and 
a good approximation for the square, according to the present calculations. 
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asymptotic limit (R +- 00) for the circular eddy, discussed earlier. Mills also 
carried out experiments to verify his analysis. The measured flow properties were 
in qualitative agreement with the analysis, but the measured vorticity of the 
inviscid core was about Q the predicted value. Mills attributes the deviation to 
the gap between the fixed and moving wall, to the secondary eddies at  the bottom 
of cavity and to three-dimensional effects. Since our numerical solutions show 
that the vorticity of the inviscid core is given correctly by Batchelor’s model, in 
spite of the presence of secondary eddies, it  is concluded that flow through the 
gaps and the end effects are the main causes of the deviation, especially in view 
of the singular character of the pressure and shear stress in the corners of the 
moving wall. 

The major part of the research described here was carried out by the author 
while working at  the Lockheed Research Laboratory, Palo Alto, California, with 
the financial support of the Lockheed Independent Research Program. The 
author gratefully acknowledges the programming assistance of Mr M. Washington 
in carrying out 2 of this study. 
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